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The emerging field of metabolomics, aiming to characterize small molecule metabolites present
in biological systems, promises immense potential for different areas such as medicine, envi-
ronmental sciences, agronomy, etc. The purpose of this article is to guide the reader through
the history of the field, then through the main steps of the metabolomics workflow, from
study design to structure elucidation, and help the reader to understand the key phases of a
metabolomics investigation and the rationale underlying the protocols and techniques used.
This article is not intended to give standard operating procedures as several papers related to
this topic were already provided, but is designed as a tutorial aiming to help beginners un-
derstand the concept and challenges of MS-based metabolomics. A real case example is taken
from the literature to illustrate the application of the metabolomics approach in the field of dop-
ing analysis. Challenges and limitations of the approach are then discussed along with future
directions in research to cope with these limitations. This tutorial is part of the International
Proteomics Tutorial Programme (IPTP18).
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1 Historical background

The high complexity of living organisms and biological sys-
tems imposes new more integrated and global (namely un-
targeted) characterization approaches that would allow ad-
dressing, in a comprehensive manner, complex situations
that are currently dealt in a piecemeal manner. Indeed, the
efficiency of conventional targeted approaches is well estab-
lished even if some limitations are acknowledged. Targeted
methods are then sensitive and specific but they do focus
only on particular compounds or activities. With such meth-
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ods, we search for the known and we only find what we
have been searching. Unidentified compounds and poten-
tially novel biomarkers remain undetected, unless unbiased
(nontargeted) approaches are employed.

The concept of biological phenotyping has then emerged
and comprehensive “omics” approaches have become for the
last years a new way for addressing life complexity. There
are three main characterization levels of biological systems,
namely genomics–transcriptomics that have emerged in the
80s [1], proteomics in the 90s [2], and the most recent one,
metabolomics, introduced about 15 years ago and in con-
stant evolution since [3] (Fig. 1). Transcriptomics refers to
the global study of gene expression at a given time point and
the transcriptome therefore corresponds to the complete set
of RNA transcripts present in particular cells. Proteomics
relates to the study of protein expression in a given bio-
logical system. Metabolomics corresponds to the study of
small molecules as ultimate cellular signaling events result-
ing from transcriptional and translational changes [4]. While
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Figure 1. The three different biological levels of omics ap-
proaches.

the genome, transcriptome, and proteome can be seen as
mediums in the flow of gene expression, the metabolome
represents the most downstream level that reflects changes
in phenotype and function [5].

The terms metabonomics [6] and metabolomics [7] ap-
peared at the end of the 1990s and early 2000s, respectively.
Although sometimes similarly used in practice, the exact
definitions of both terms may be differentiated. “Metabo-

nomics is defined as the quantitative measurement of the
dynamic multi-parametric metabolic response of living sys-
tems to pathophysiological stimuli or genetic modification”
[4], while “Metabolomics corresponds to the study of the com-
plete set of metabolites/low-molecular-weight intermediates,
which are context dependent, varying according to the physi-
ology, developmental or pathological state of the cell, tissue,
organ or organism” [3]. In most cases, the approach consists
in a differential study of metabolomes generated from “con-
trol” and “test” subgroups of observations to find differences
in their profiles in response to external stimuli (pathologies,
effect of biochemical or environmental stresses, food process-
ing, etc.) (Fig. 2).

Even if comprehensive quantitative analysis of metabo-
lites had already been achieved in the 1970s through GC-MS
[8, 9], at the end of the 1990s, the combined improvement
in analytical instrumentation and informatics have enabled
the acquisition of comprehensive metabolic profiles and their
mining using appropriate multivariate statistical tools. These
tools were subsequently used for metabolomics proof-of-
principle studies in a variety of species and applications. His-
torically, the most widely used technique for metabolomics
purposes is NMR. NMR spectroscopy provides a rapid, non-
destructive, high-throughput method that requires minimal
sample preparation. Moreover, robustness of the NMR equip-
ments is a key parameter that has not been equaled to date
by other types of instruments. However, MS-based methods
have proved now for years to be valuable for such studies, es-
pecially thanks to recent technological advances. Indeed, MS
offers higher performance in terms of sensitivity than NMR,
which is extremely useful for measuring species with low
abundance put potentially valuable information. Moreover,

Figure 2. Global principle of a typical metabolomics experiment. Samples from two or more subgroups are collected, prepared, and
characterized through a comprehensive analytical technique. The raw data are then processed and differences that correspond to poten-
tial biomarkers are revealed. The structural elucidation of the differential signals (biomarker identification) is expected to improve the
knowledge regarding the metabolic differences between the two subgroups from a descriptive, explicative/mechanistic, and/or predic-
tive/diagnostic point of view.
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the specificity of MS (through high-resolution and/or mul-
tidimensional MSn techniques) can help and even facilitate
elucidation of the chemical structures of potential metabo-
lites of interest. One drawback of MS may be its need for
higher sample preparation than NMR and its possible hy-
phenation to a separation technique (either LC or GC), to
separate metabolic components from the samples, which may
extend the time of analysis.

The purpose of this article is to guide the reader through
the main steps of the MS-based metabolomics workflow, from
study design to structure elucidation, and help the reader to
understand the key phases of a metabolomics investigation
and the rationale underlying the protocols and techniques
used. This article is not intended to give standard operating
procedures as several papers related to this topic were already
provided, but is designed as a tutorial aiming to help begin-
ners understanding the concept and challenges of MS-based
metabolomics.

2 Basic concepts

2.1 What is the metabolome?

The metabolome is defined as the complete set of metabolites
present in an organism. It is admitted that the metabolome
basically refers to small molecular species (from 50 to 1500
Da), which are endogenous organic substances (intermedi-
ates and products of metabolism, which is the set of chem-
ical reactions that occur in living organisms), although in-
organic and elemental species can also be studied [10],
and the metabolome includes as well xenobiotics. Endoge-
nous metabolites can be classified as primary and secondary
metabolites. Primary metabolites are directly involved in pro-
cesses essential to life such as normal growth, development,
and reproduction (amino acids, organic acids, etc.). Secondary
metabolites are not directly involved in those processes and
are not essential to sustain cells life. They are synthesized for
particular biological functions and are present in a taxonom-
ically restricted set of organisms or cells (e.g., alkaloids in
plants or antibiotics in fungi). Xenobiotics are foreign chemi-
cal substances found within an organism that is not naturally
produced by or expected to be present within that organism.
They may come from external sources such as diet, med-
ications, etc. The “xenometabolome” refers to metabolites
generated by the biotransformation of xenobiotics, mainly in
liver for mammals [11]. It consists in phase I reactions mostly
corresponding to oxidation–reduction reactions acting to
detoxify the compounds and phase II reactions corresponding
to conjugation to polar moieties for elimination purposes.

The metabolome represents a vast number of components
that belong to a wide variety of compound classes. This pro-
vides wide variations in chemical (molecular weight, polarity,
solubility) and physical (volatility) properties ranging from
ionic inorganic species to hydrophilic carbohydrates and sec-
ondary natural products to hydrophobic lipids. Moreover,

Figure 3. The three different approaches that are encountered in
MS-based metabolomics. The metabolite targeted analysis cor-
responds to the quantification of one or a restricted number
of compounds (e.g., one star in the sky). The metabolic profil-
ing corresponds to the monitoring and (semi)quantification of
a metabolic pathway or a particular class of compounds (e.g.,
a constellation in the sky, e.g., Cassiopeia constellation or Ursa
major constellation). Metabolic fingerprinting corresponds to the
(semi)quantification of all the metabolites accessible to the anal-
ysis (e.g., the whole sky).

metabolites occur in a wide concentration range, over an es-
timated 7–9 magnitude of concentrations (pmol–mmol) [12].
The size of the metabolome varies greatly, depending on the
organism studied; Saccharomyces cerevisiae contains approx-
imately 600 metabolites [13] and the plant kingdom has an
estimated 200 000 primary and secondary metabolites [7].
The human metabolome may be narrower than the plant
one. However, both the hormone complexity and the input
of food (and medicine) metabolites may lead to a much wider
metabolome in human [14]. At present, more than 4200 com-
pounds have been annotated in human metabolite databases
[15]. Consequently, comprehensive metabolomics investiga-
tions are primarily a challenge for analytical chemistry and
specifically MS has vast potential as a tool for this type of
investigation [16].

2.2 MS-based metabolomics: Different approaches

Current MS-based metabolomics investigations can be cate-
gorized as three approaches roughly classified according to
the data quality and the number of metabolites that can be de-
tected [12] (Fig. 3). First is the metabolite targeted analysis that
refers to the detection and precise quantification of a single
or small set of target compounds. Second is metabolic profil-
ing, which focuses on the analysis of a group of metabolites
either related to a specific metabolic pathway or a class of com-
pounds. In most cases, metabolic profiling is a hypothesis-
driven approach: metabolites identities (or chemical family)
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are usually known a priori. For these two approaches, partic-
ular metabolites are selected for analysis depending on the
investigated study, and specific analytical methods are devel-
oped for their determination. As an example in metabolic
profiling, endogenous glucuronides (corresponding to phase
II metabolites, see Section 2.1) excreted in human urine
can be selectively monitored for classification and predic-
tion of gender [17]. The advantage of both approaches is
that the structure of the monitored metabolites is partly (or
fully) known that facilitates their structure elucidation and
associated biological interpretation. Numerous quantitative
metabolic profiling methods analyzing different metabolite
subsets have already been developed and are routinely used.
If these methods measuring key metabolites from different
biochemical pathways are assembled as building blocks to
study the metabolome, a powerful metabolomics approach
can evolve [16]. The third approach toward metabolomics is
metabolic fingerprinting used for an extended metabolome
comparison. The objective is to compare patterns of all the
metabolites accessible to the analysis that change in response
to the studied factor. This approach is not driven by a priori hy-
pothesis, therefore it is open to new findings. Its disadvantage
may be that the identity of the metabolites of interest is estab-
lished a posteriori and this remains a challenge (see Section
2.3.6). Metabolic fingerprinting can also be used strictly as
an investigation tool when the intention is not to structurally
elucidate each observed signals, but to use the combination
of differential signals for diagnosis. For example, in horse
racing doping analysis, a metabolic fingerprinting approach
was developed as a new effect-based screening tool to tackle
the illegal use of recombinant equine growth hormones [18].

2.3 How do we perform metabolomics analyses?

Beyond the concept of biological signature, or more particu-
larly those of metabolic phenotypes, metabolomics requires
a practical implementation of a global methodological frame-
work [19]. This methodological framework is composed of
several steps that will all affect the quantity and quality of the
data obtained (Fig. 4). Briefly, a metabolomic study implies
samples collection, preparation, and generation of metabolic
profiles through a given analytical tool. The acquired data are
then processed using dedicated deconvolution softwares and
analyzed using appropriate statistical techniques to isolate a
smaller number of potentially relevant metabolites that are
believed to differentiate the subgroups of observations to be
compared (differential metabolites and/or potential biomark-
ers). Follow-up experiments then focus on identification of
these differential metabolites and further biological explana-
tion of the observed changes.

Metabolomics represents then a multi- and interdisci-
plinary approach. It relies on three main disciplines: ana-
lytical chemistry, chemometrics, and biology. As mentioned
already, the metabolome is characterized by a high diversity
in terms of physicochemical properties and concentrations

Figure 4. Typical analytical workflow constituting metabolomics
studies. Each step, relying either on biology (study design, sample
collection, biological interpretation), chemistry (sample prepa-
ration, metabolomics profiles generation, structure elucidation),
or bioinformatics (bioinformatics analysis, structure elucidation)
must be designed carefully to maximize the quantity and the qual-
ity of the information obtained from an experiment.

expected. Therefore, the sample preparation, metabolic pro-
files generation, and structure elucidation steps will imply
several challenges that will need analytical chemistry to be
solved. Considering the large number of signals detected in
metabolomics approaches and especially in metabolic finger-
printing approach, chemometrics then appears necessary for
extracting the most relevant information from the generated
data. Finally, in the objective to contribute to biochemical
knowledge and understanding of underlying mechanisms of
action, biology is essential to make sense to the observations
as well as understand the metabolic pathways of interest.

Within the scope of this article, we will describe the
metabolomics workflow in a stepwise fashion with the ob-
jective to help the reader to understand the key phases of a
metabolomics analysis, the challenges associated to each step,
and the rationale underlying the different methodologies ex-
isting. This article is dedicated to MS-based metabolomics
approach, therefore MS-related protocols will be particularly
emphasized.

2.3.1 Study experimental design

If the different steps constituting a metabolomics study
should all be carefully considered, the study design is par-
ticularly crucial since all subsequent results from the study
will rely on the successful achievement of this step [20]. As it is
the case with the quality of analysis of the experimental data,
the study design directly influences the amount and quality of
information obtained from a given experiment. A good exper-
imental design must enable to distinguish specific from un-
specific biological variations, in order to access more clearly to
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the meaning of observed metabolic changes. A successful de-
sign of experiment must be designed or at least checked by the
different disciplines involved in a metabolomic investigation.
Biologists may clearly state the research question and may in-
form about biological factors and possible confounding ones.
Indeed, since genetics [21], gender [22], environment [23],
diet [24] (etc.) will dramatically influence the metabolic pro-
files, these factors have to be considered in study design and
attention should be paid to homogenize controls and tests
groups and to minimize possible confounders. Statisticians
may validate the statistical power of the study to ensure that
a sufficient number of samples are acquired and to reduce
the influence of biological variability and obtain statistically
validated data. The sample size required to get validated data
is dependent on the experiment conducted, that is, the ex-
pected effect size, SD of the effect of interest, measurement
variability, biological variance, etc. Therefore, there is no gold
number regarding the number of replicates that should be
included in a metabolomics experiment. For instance, five
individuals may be sufficient in a study evaluating the effects
of high-dose exposures to phthalates in rats [25], whereas
tens of samples are required to highlight urinary biomark-
ers of citrus consumption in human [26]. Finally, analytical
chemists may compile the recommendations of biologists
and statisticians and ensure that (i) the technical variance is
under control, and (ii) the number of samples to analyze is in
agreement with the capabilities of the analytical laboratory.

When considering the design of a metabolomics study,
an issue to consider is the time of the sampling. Indeed, in-
traindividual variations may obscure the metabolic profiles.
For example, diurnal variations in metabolite content were
observed in two mouse strains from which urine samples
were collected in the morning and afternoon. Interpretation
of the metabolic profiles established that the metabolic differ-
ences between the two mouse strains were confounded by the
influence of diurnal variation, illustrating how normal physi-
ological variation factors may hinder metabonomics analyses
[27]. The metabolome may as well vary rapidly after intake of
food. Analysis of the influence of a single intake of almond
skin polyphenols on the 24-h kinetic trajectory of the human
urinary metabolic profiles was assessed using LC MS. Modi-
fications in the urinary metabolome were observable as soon
as 6 h after the intake [28].

Two other questions must be answered during the study
design, that is, (i) what type of sample will provide the most in-
formation for the particular investigation? and (ii) what types
of samples are most feasible and easy to collect? [29] The bi-
ological samples most relevant in the study of mammalian
biochemistry are biofluids, cells, or tissues. Each biofluid is
unique in the type of information it has to offer: urine con-
tains the highest number of water-soluble metabolites and
provides a rich source of metabolic information. The compo-
sition of blood is well maintained through homeostatic con-
trol, which makes it less variable than urine [30]. However,
there are significant chemical differences between serum and
plasma due to their collection and therefore the choice be-

tween both biofluids may not be arbitrary [31]. Moreover, for
plasma samples, EDTA is recommended as anticoagulant in
sample collection, because peaks derived from heparin might
overlap with endogenous metabolites (especially for GC-MS
analysis), which may induce intersample variation [32]. De-
pending on the application, solid samples (e.g., tissues, food
products, or plant material) may be collected and a ratio-
nal choice has to be made. For example, concerning plant
metabolomics, there is a large variety of available samples
(e.g., leaves, roots, sap, fruits, flowers, etc.), which do not pro-
vide the same information in terms of accessible metabolism.

Samples collection must follow a single and reproducible
procedure that has been defined during the study design. In-
deed, these sampling conditions appear crucial in terms of
representativeness and homogeneity of the samples [30, 32].
In particular, samples from cases and controls need to be
treated identically as certain metabolites may be very suscep-
tible to slight deviations from standard protocol. For instance,
the devices into which the samples are collected should be
chosen so as to minimize unwanted variation (use the same
tubes for all the collected samples) and to avoid introducing
external contaminants such as surfactants and plasticizers
that can cause serious interference during the analysis. More
globally each applied sample pretreatment can have direct
consequences on the metabolic fingerprints generated (con-
tent and variability) [33]. As an example, for blood sample
collection, details such as clotting time, clotting temperature,
and treatment conditions prior to centrifugation need to be
considered and standardized. It was demonstrated that vari-
ation due to clotting time caused changes in energy metabo-
lites, which were delayed by clotting on ice [34]. Finally, fol-
lowing sample collection, special care must be taken to stop
the formation or degradation of metabolites by quenching
step in order to stabilize the sample by stopping metabolic
reactions. Sample storage at −80�C or at least −20�C is rec-
ommended, and urine samples were shown to be stable for
up to 6 months when stored in these conditions [35], while
storage at 4�C without addition of preservative for prolonged
periods induced a change in metabolic content due to micro-
bial contamination [36].

2.3.2 Sample preparation

The extremely wide diversity of potential metabolites present
in a biological sample in terms of physicochemical proper-
ties (hydrophilicity/hydrophobicity, volatility, chemical reac-
tivity/stability) and concentrations makes the goal of measur-
ing them all in metabolomics unrealistic. No single method
of sample collection (sampling, quenching, storage) and
preparation (extraction, dilution, clean-up) is applicable to
all metabolites because conditions that stabilize one type of
compound may destroy other types or interfere with their
analysis. Methods are developed to be appropriate for the
majority of metabolites while removing matrix components
that will interfere with the analysis even if many crucial
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metabolites, particularly minor or unstable ones, will be
missed in metabolomics analyses. Indeed, any kind of sample
preparation will cause analyte losses either total or partial. In
the case of a partial loss of some analytes, the issue of sample
preparation is not in the recovery but in the reproducibility of
the protocol. Metabolomic studies typically comparing the rel-
ative levels of metabolites in a large number of samples, good
reproducibility for a wide range of metabolites is absolutely
necessary to ensure that small changes in these metabolite
levels can be accurately determined. This may be simple for
biofluids when little or no sample preparation is needed but
may be much more complex for other matrices. Moreover,
metabolism is in constant flux, the concentration of metabo-
lites can change rapidly if appropriate measures are not taken
during sampling and extraction, these measures must not de-
nature or modify the sample. Considering those challenges,
an ideal sample preparation method for global metabolomics
should (i) incorporate a metabolism quenching step to repre-
sent true metabolome composition at the time of sampling;
(ii) be as nonselective as possible to ensure adequate metabo-
lite coverage; (iii) be simple and fast to prevent metabolite
loss and/or degradation during the preparation procedure;
and (iv) be reproducible [37].

Special care must be taken to stop the formation or degra-
dation of metabolites by adequate sample preparation and
storage conditions. A preliminary quenching step is there-
fore important in order to stabilize the sample by stopping
metabolic reactions [38]. This can be done by use of low tem-
peratures (cold solvent addition, freezing in liquid nitrogen),
addition of acid, or fast heating [39]. Sample storage at −80�C
and sample aliquoting at collection time in order to avoid mul-
tiple freeze-thawing cycles of the samples between storage
and measurement may be recommended [40]. The need for
an unselective sample-preparation procedure is dictated by
the need to analyze quickly as wide a range of metabolites as
possible. Regarding liquid samples, simple unselective meth-
ods such as dilution and solvent precipitation predominate
in the metabolomics of biological fluids because they enable
high metabolite coverage. Those different approaches are well
reviewed in the literature [37–39, 41]. Typical dilution factors
for urine between 1:1 and 1:10 with purified water are encoun-
tered [42–44]. The advantage of such method is its fastness,
whereas major inconvenience may be ionization suppression
occurring during the analysis because of the competitive na-
ture of the electrospray process if LC-related methods are
used (for more information regarding ion suppression phe-
nomenon, look at Antignac et al. [45]). A freeze-drying step
followed by a reconstitution at a defined dry matter concen-
tration is reported for urine, as a way to avoid the dilution
factor issue typically encountered with this matrix [46]. Nor-
malization to specific gravity providing a fair estimation of
urine osmolality can also be used [47]. Regarding serum or
plasma, the high protein content of blood necessitates pro-
tein removal. Precipitation with ACN or acetone is reported
as efficient [48], and precipitation with methanol, ethanol, or
a mixture of methanol and ethanol results in a good metabo-

lite coverage [49]. One drawback of such methods is that none
of these enables complete protein removal, and the amounts
of proteins remaining in the final extract are estimated to
be 2–10%, depending on the solvent and precipitant ratios
selected [50]. Ultrafiltration may also be employed for liquid
matrices with the simple use of a filter that allows passage
of molecules of specific molecular weight (common molecu-
lar weight cutoffs of 3000, 10 000, and 30 000 Da) [51]. One
drawback may be the possible loss of hydrophobic species.

Besides, the level of detail to which the metabolome should
be covered depends on the scope of the study and on prior
knowledge. Some applications can use relatively selective
sample preparation protocols if some preliminary data or
knowledge suggests that the most useful information to look
for is present in one or more particular fractions of the sample
to be targeted, as is the case with metabolic targeted analy-
sis or metabolic profiling approaches for which preselected
metabolic pathways or groups of metabolites with similar
chemical properties may be monitored. SPE is one example
among the most important sample preparation techniques
used for this purpose. SPE can be very selective by selectively
washing the matrix interferences and eluting the analytes
of interest [52]. The advantage of such techniques lies in the
good repeatability of the protocol and effectiveness of removal
of interferences, but its main disadvantage is that the sorbent
material increases the selectivity of the preparation procedure
that can lead to reduced metabolite coverage and impair the
scope of metabolic fingerprinting.

Regarding solid matrices, an extraction step is required for
transferring the metabolome compounds into a liquid phase.
Samples can be freeze-dried prior to extraction to allow for
better homogeneity, repeatability, and extraction capabilities.
Different solvent systems with various polarities can be used
(e.g., methanol, ACN, ether, acetone, hexane, cyclohexane),
which lead not surprisingly to the production of different and
complementary fractions of the studied metabolome (Fig. 5).
Methods that can simultaneously extract both hydrophilic
and lipophilic species, for example, chloroform–methanol
or chloroform–methanol–water extraction are also popular
[53,54]. Subsequent purification steps may then be employed
(e.g., liquid–liquid partitioning, SPE) as described for liq-
uid matrices depending on degree of selectivity wished to
be reached for the particular application.

Finally, if a gas chromatographic separation method is
used for analysis, the addition of a derivatization reaction
step prior to injection may be considered for low volatiles
analytes in order to reduce polarity and increase volatility.
The most common derivatization procedures are alkylation,
acylation, or silylation, the active hydrogen in functional
groups (–COOH, –OH, –NH, and –SH) are replaced by alkyl-,
acyl-, or silyl-groups to form esters or ethers [55,56]. Carbonyl
groups may as well be derivatized in their corresponding
oximes, which stabilize a-ketoacids and locks sugars in open-
ring conformation [57]. Chloroformates have been proven
to be strong and rapid derivatizing reagents, and in con-
trast to trimethylsilylation derivatization, alkyl chloroformate
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Figure 5. Venn diagram representing the results obtained
from the comparison of the metabolic information (common
and unique ions detected in MS) generated from the extrac-
tion of bovine tissue with ACN or a biphasique chroloro-
forme/methanol/water mixture (Bligh and Dyer protocol). The use
of different procedures leads to specific information being gener-
ated: unsurprisingly, the aqueous and organic phases generated
from the Bligh and Dyer extraction have only a few ions in com-
mon; the ACN extract and the organic phase of the Bligh and
Dyer extraction have around 50% information in common, corre-
sponding mostly to lipids, while the ACN and the aqueous phase
generated from the Bligh and Dyer protocol have less than 10%
ions in common.

derivatization reactions occurred directly in aqueous media
without the requirement of heating, thereby simplifying the
sample pretreatment and derivatization procedure [58].

2.3.3 Metabolomics profiles generation

Again, considering the large number of possible metabolites,
their chemical diversity and the large range of possible con-
centrations, there is no single analytical technique that can
achieve full coverage of all metabolites simultaneously. GC-
MS may be suitable for small and volatile compounds while
analysis of polar or ionic metabolites may be achieved with
LC-MS. The size of the metabolome is unknown but supposed
to be very large with tens to hundreds metabolites having the
same molecular weight. This is problematic for MS-based
approaches and the ability of the mass spectrometer to sepa-
rate compounds having close m/z is particularly challenged.
Ideally, the techniques used for metabolic profiling should
then be capable of providing correct mass resolving power.
A good mass accuracy is as well appreciated for structure
elucidation purposes (see Section 2.3.6) with analyzers with
sufficient dynamic range to be able to cope with the wide varia-
tions in metabolite concentration likely to be encountered. As
mentioned in the sample preparation section, metabolomic
analysis being semiquantitative, such techniques should also

provide reliable and reproducible performance to enable the
comparison and analysis of large number of samples.

As a starting point of this section, it appears worth de-
scribing the different signal-acquisition modes that may be
encountered for metabolome analyses with MS. The most
common acquisition mode is certainly the full-scan mode,
particularly for metabolic fingerprinting [59]. In this mode,
a target range of ions is monitored by the MS analyzer, for
example, from m/z 50–1000 (Fig. 6A). Instruments with high
mass resolving power (R > 10 000) are the most popular
instruments when working in full-scan mode (e.g., instru-
ments such as FT-ICR or Orbitrap TM and to a lesser extent
TOF instruments). The mass resolving power is the capacity
of a mass spectrometer to separate ions of close m/z ratios,
that is, isobars, chemicals that do not have the same raw for-
mula but identical nominal masses (when integer masses are
used for the atoms). It is defined as the ratio of the measured
mass “m” to “�m”, the full width of the peak at half its maxi-
mum height (i.e., m/�m, FWHM). Such analyzers allow the
separation of compounds having close m/z and allow there-
fore the generation of highly informative data and are of im-
mense help for structure elucidation purposes. An excellent
review dealing with the use of high-resolution instruments
for metabolome analysis has been recently released [60]. For
metabolic profiling or targeted analysis, more selective signal-
acquisition modes may be preferred. MS/MS uses two ana-
lyzers (or more) in a single instrument and allow precursor
ion and neutral loss scanning (e.g., triple quadrupole instru-
ments). Precursor ion scanning corresponds to the analysis
of all precursors of a single charged product. The first mass
analyzer is scanning a range of ions, while the second mass
analyzer is static at the m/z of a product ion known to be
common to the analytes to be monitored (Fig. 6B). Neutral
loss scanning corresponds to the analysis of all precursors of
a single uncharged product. The two mass filters are scan-
ning synchronously at a user-defined offset. The uncharged
product is known to be common to the metabolites (Fig. 6C).
Both signal acquisition modes may be used when the aim
is to monitor a selected number of predefined metabolites
belonging to a same family and presenting common struc-
tural particularities (metabolic profiling) [61]. As an example,
phase II metabolites show characteristic fragmentation pat-
terns in MS: diagnostic product ions m/z 97 corresponds to
the sulfate moiety of sulfoconjugated metabolites. Using the
precursor ion scan mode, it is possible to scan for the precur-
sors of ion m/z 97 thus getting access to the family of com-
pounds that are sulfoconjugated. In the scope of revealing
potential biomarkers signing a fraudulent administration of
4-androstenedione, this strategy was successfully conducted
with UPLC-MS/MS and the diagnostic ion m/z 97 was used
to fish for the precursor ions of any potential conjugated sub-
stance leading to a sulfate moiety after fragmentation, thus
revealing potential marker metabolites of 4-androstenedione
administration [52]. Finally, the MRM analyses specific pre-
cursors producing specific products. Both the first and sec-
ond mass analyzers are held static at the m/z of the precursor
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Figure 6. Description of the different
signal-acquisition modes that may be en-
countered for metabolome analyses.

ion and the product ion, respectively (Fig. 6D). This signal
acquisition is particularly used when the objective is to mon-
itor several known metabolites (targeted approach). As an
example, a MRM method was developed for measurement of
141 water-soluble cellular metabolites including components
of central carbon, amino acid, and nucleotide metabolism
among which 69 could be successfully quantified [62].

Regarding the sample introduction into the MS systems,
direct introduction of the samples (infusion or flow-injection
analysis) is commonly used with atmospheric pressure ion-
ization techniques, particularly electrospray. Considering the
above, such introduction technique is usually coupled with
high mass resolving power MS-analyzers operating in full-
scan mode. The application of this approach has been proven
to be powerful for low complex matrices [63] or after effi-
cient purification of the samples [64]. Its advantage lies in
the high-throughput sample processing offered, but it can be
dramatically impaired by matrix effects and in particular ion
suppression phenomenon [65].

To circumvent this, coupling the MS analyzers (simple MS
or MS/MS) with a separation technique is relevant. Indeed,
optimized LC or GC separation then becomes essential in
order to reduce matrix effects and to separate isobaric com-
pounds, compounds having exactly the same m/z but differ-
ent physicochemical properties inducing different retention
times. The use of GC with electron ionization (EI) is well
suited for volatiles or nonpolar compounds [56]. Compounds
screened by GC-MS cover large parts of primary metabolism
[55]. Due to the highly energetic process of ionization in EI,
GC-MS provides informative MS spectra of the metabolites
detected and as a result, the capability to identify unknowns.
One drawback may be the high redundancy of the data (sev-
eral m/z corresponding to one metabolite) that makes the
data processing a tricky issue. Then, chemical ionization,
known to be less energetic and offering the possibility to ob-
serve the intact molecule (molecular ion) can be preferred
even if this ionization process is not often encountered in
metabolomics. Nevertheless, GC analysis may be limited to

thermally stabile compounds with a sufficient vapor pressure
for volatilization during the injection. The introduction of
ionic or nonvolatiles species may then be performed with LC
[66]. Hydrophobic components will then be well separated
with the used of RP chromatography, while hydrophilic and
neutral compounds are best suited for hydrophilic separation
(hydrophilic interaction chromatography) [67] ESI (soft ion-
ization) remains the most commonly employed techniques in
LC, while atmospheric pressure chemical ionization and pho-
toionization may lead to complementary information being
generated [68], but these alternative techniques have not yet
extensively been used in the field. From this, we understand
that there is not one single technique suited for metabolomics
since GC and LC have their own advantages/disadvantages
(Table 1), but the combination of different techniques for pro-
files generation represents one means to achieve the widest
coverage of the metabolome [69].

2.3.4 Data processing and bioinformatics

Typically, an MS-metabolomic experiment produces a huge
amount of raw data. The handling of such complex datasets
manually is practically impossible. Hence, specific software
tools and algorithms are needed. The objective is to convert
these so-called raw, instrumental data into extracted data (e.g.,
peak tables) that can easily be processed by statistical tools.
In MS-based metabolomics, metabolite fingerprints are de-
scribed by m/z values and corresponding intensities of de-
tected ions. For direct injection MS, spectral bins may be the
most straightforward method to deconvolute the spectrum. It
corresponds to the transformation of the mass spectrum into
vectors of uniform length (e.g., in nominal mass resolution
spectra, m/z are converted to integer values and the bin sizes
are usually 1 amu) and the report of the intensity of the MS
signals detected. If high resolution is utilized for acquisition,
the issue is trickier since small drifts in mass measurement
can occur and lead to a metabolite being assigned to different
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Table 1. Advantages and disadvantages of GC and LC for metabolomics application

LC GC

Advantages Suited for polar to apolar compounds
Minimal sample preparation
Access to the molecular ion (intact

molecule)

Suited for apolar and volatiles compounds
Structure information obtained through

in-source fragmentation
Existence of universal databank (facilitates

structure elucidation)

Disadvantages Small and very polar molecules needs
specific chromatographic column

Reduced fragmentation (need MSn for
structure identification)

Subjected to ion suppression phenomenon

Requires higher sample preparation
Polar compounds need derivatization
Extensive fragmentation (leads to

redundancy in the information generated
and molecular ions hardly identifiable)

bins from one sample to another. This problem can be mini-
mized by the use of internal calibration (a reference standard
introduced continuously into the MS) that allows subsequent
alignment of mass spectra.

If the MS instrument is hyphenated to a separation tech-
nique, retention times are also used to index metabolites (Fig.
7A). Thus, the challenge lies in the correct and complete resti-
tution of all the information contained in the raw data, that is,
m/z values, retention times, and intensities while handling
issues such as baseline drift, retention time shifts, noise,
and artifacts generated by the instrument. Comprehensive
overviews of many of the existing tools for MS data process-
ing in metabolomics have been recently reviewed [70–72].
Basically, the first step is the filtration of the analytical back-
ground, which has no interest for the study in itself and may
confuse the data. The second step corresponds to the peak
picking step, that is, the report of the signal abundance ob-
served for each ion [m/z;rt]i in each of the analyzed samples.
The same issue as the one encountered for spectral binning
may occur here for high-resolution data and internal cali-
bration is as well a mean of minimizing it. Depending on
the software used, peak picking may proceed differently (Fig.
7B). Indeed, some softwares extract successively each specific
ion chromatogram corresponding to each m/z value and in-
tegrates (either height or area) the corresponding chromato-
graphic peaks. Some other softwares extract successively the
mass spectra at each retention time unit and report the sig-
nal intensities of each ion observed on these mass spectra.
The advantage of the first option is certainly to minimize the
proportion of unwanted noise considering that the presence
of a chemical entity behind the detected signal is preliminary
checked when the existence of a chromatographic peak is
demonstrated. The third step of such data processing corre-
sponds to a peak alignment process for correcting retention
time shifts that may occur from one sample to another. As
depicted in Fig. 7C, an ion at a given mi/zi (named Mx) and
a given retention time rti (named Ty) may be subjected to
small drifts in retention time (epsilon). These drifts have to
be corrected to ensure that each ion [mi/zi] of the MS fin-
gerprint appears at identical retention time (rti) across all

the analyzed samples and is reported as being the same ion
for all the samples. Finally, missing values may be treated
during a last step “fill the gap.” Missing values may arise
because the concentration of a particular metabolite is below
the LOD of the instrument used. In that case, and consider-
ing that in metabolomics we do not have the knowledge of
the LOD for each existing metabolites, it may be reasonable
not to assign a value of zero but rather half (or one-third)
the lower value detected for respective ion. Some softwares
integrate the proximal background noise when no chromato-
graphic peak is present. The last step of the data processing is
the generation of the final report. Integrated peaks (MxTy) are
sorted out to generate a 2D data table, in which rows represent
the different ions and columns report some characteristics of
the detected ions (i.e., m/z, retention time, intensities in the
samples, etc.). This table can then be easily processed by sta-
tistical tools in order to extract the relevant information from
this huge dataset.

Secondary signals such as isotopes, adducts, dimers, and
fragments may further lead to data redundancy because they
account for the same metabolite. This may disrupt the statisti-
cal analysis and slow down the identification procedure by in-
creasing the number of variables that have to be investigated
and also by leading to unsuccessful database queries. There-
fore, these signals can be automatically annotated by corre-
lation analysis on both signal shape and intensity patterns
using software tools such as CAMERA [73], PUTMEDID-
LCMS [74], and mzMatch [75]. Such peaks are not dis-
carded, but only flagged, so that their assigned annotations
can be taken into account in the metabolite identification
step.

2.3.5 Data analysis

Data generated through metabolomics approaches are char-
acterized by high dimensionality, where the number of vari-
ables measured per subject vastly exceeds the number of
subjects in the study, especially for metabolic fingerprinting
approaches [76]. The previous data-processing stage usually
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Figure 7. (A) Complexity of a metabolic profile. One sample corresponds to one total ionic current. At each retention time unit is associated
a full-scan mass spectrum. The raw data can then be visualized as a 3D map. (B) Peak picking step: it may proceed by the extraction of
mass spectra corresponding to each unit of retention time or by the extraction of specific ion chromatograms corresponding to m/z values
scanned during the acquisition. (C) Analytical shifts that may occur in retention time from one sample to another.

generates data tables that are difficult to analyze comprehen-
sively without appropriate and hyphenated statistical tools.
Before looking into the more complex multivariate meth-
ods, it may be desirable to look at the statistical properties
(mean and variance) of individual metabolites and the rela-
tions between them (and each other) and the other measured
properties of interest. Univariate methods as, for example,
the classical Student’s t-test can be used as a first means of
revealing potential candidate compounds presenting signif-
icant differences in terms of abundance between two sub-
groups of samples. However, a limitation of this approach is
the absence of consideration of correlations between variables
that could be at least or even more informative than the vari-
ables considered separately. Moreover, because the biological
differences between samples sometimes arises from compar-
atively small differences in many metabolite concentrations,
recognizing the pattern and interpreting is not straightfor-
ward. Such correlation patterns can be studied using multi-
variate techniques that aim to reduce the complexity of the
datasets and to highlight the analytical information of bio-
logical relevance [77, 78]. PCA is the most commonly used
method to explore relationships between samples in

metabolic fingerprinting studies. It aims to extract a small
number of latent components that summarize the measured
data with minimal information loss by taking advantage of
the correlation structure of peak intensities. The new latent
components are derived from the original data in such a way
that the greatest variation in the data is captured in the first
group (first component, or PC1), the second greatest variation
in the second (PC2), and so on. This method is particularly
useful as a first step in data analysis to visualize trends and
outliers. PCA is expected to reveal the most important factors
of variability characterizing the considered data set. However,
the main source of variability characterizing the dispersion of
the original data is rarely the source of variability associated
to the studied factor. In this case, supervised methods such as
partial least squares-discriminant analysis or orthogonal par-
tial least squares-discriminant analysis may be used in order
to extract from the whole dataset the useful information, for
explaining and predicting the membership of the analyzed
samples to different subgroups (or classes). These two meth-
ods provide as well good diagnostic tools for the detection of
biomarkers. However, one drawback may be their potential
to “overfit” the data (i.e., to lead to statistical models based
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more on the high number of variables available than the real
robustness of individual contributors to the expected discrim-
ination between samples). Each model built therefore has to
be carefully validated before it is used for predictive modeling
of unknown samples [19]. A recent review gives an overview
of the various strategies that can be applied for metabolomics
analysis [79].

Importantly, data pretreatment must be considered before
any multivariate analysis. It corresponds to transformations
that are applied to the dataset to convert data to a different
scale. Subsequent data-processing steps may include center-
ing, scaling, or other transformation of the original variables.
Centering corresponds to spatial translation of the data from
around the mean value to around zero (i.e., the barycenter of
all individuals is set to zero). Transformations (log or square
root) correspond to nonlinear conversions of the data aiming
at reducing the influence of a few particularly intense sig-
nals (due to the huge dynamic range in terms of metabolite-
concentration levels) that can strongly influence statistical
analysis and subsequent interpretation. Scaling methods are
data-pretreatment approaches that divide each variable by a
given (namely scaling) factor. By scaling the data, the relative
weight given to each variable whatever its abundance in the
dataset can be adjusted, in order to avoid for instance a sys-
tematic overweight of highly abundant variables. The most
used scaling methods are autoscaling (the SD of a variable is
the scaling factor) and Pareto scaling (the square root of the
SD is the scaling factor). One drawback of autoscaling may
be the dilution of the analytical information of biological rele-
vance. Indeed, an excessive/uncontrolled scaling may results
in overrepresentation of small variables that can be just noise,
which can have undesirable side effect on the statistical anal-
ysis. Pareto scaling finally appears as a good compromise. A
summary of the various data pretreatment methods is given
in a previous publication [80].

2.3.6 Structural elucidation

Structural elucidation of the MS signals of interest is an
important step in metabolomics approaches. Indeed, using
metabolomics exclusively for fingerprinting without identi-
fying the metabolites that cause clustering of experimen-
tal groups will only deliver a classification tool but not
directly contribute to biochemical knowledge and under-
standing of underlying mechanisms of action. Given the
chemical diversity of most metabolomes and the character
of most metabolomics data, metabolite identification is still
a real challenge. When it comes to characterize metabolic
profiles wider than in a defined list of substances (metabolic
profiling), this step still remains extremely long and difficult,
especially for LC-MS based methods as acknowledged by sev-
eral articles in the field [81–83]. Consequently, a great deal
of effort in metabolomics over the past decade has been fo-
cused on making metabolite identification better, faster, and
cheaper [81, 84]. The first step in metabolite characterization

is the identification of the MS molecular ion for database
queries. As already mentioned, in GC-EI-MS, the highly en-
ergetic process of ionization makes it difficult to identify
the molecular ion. However, EI leads to a very reproducible
fragmentation in which advantage is to allow the establish-
ment of universal EI mass spectra databanks (e.g., the NIST
database—National Institute of Standards and Technology [85]),
which can be queried to ease the identification step. The situ-
ation is different when working with API-related techniques
since they exhibit high interinstrument variability regarding
fragmentation, impeding the creation of universal libraries.
A guide to identification of metabolites using LC-MS is pro-
vided in Watson et al. [84]. Briefly, since in API techniques
the ionization process is very soft, it can be easier to identify
the protonated or deprotonated molecule, (M + H)+ or (M
− H)−, respectively. The monoisotopic mass observed can
then be subjected to databases [86–89]. These databases allow
a search on the basis of the compound monoisotopic mass.
In this case, the knowledge of the accurate mass (thanks to
high-resolution MS) is helpful, if not mandatory to shorten
the list of possible candidates, but even though most of the
time insufficient for complete identification of the compound
of interest. Indeed, there are sometimes tens of possible
structures even for a mass entered with three-digit precision.
Algorithms for filtering molecular formulae from accurate
mass determination and isotopic pattern (which can be ex-
ploited on an easier way compared to peptides or proteins
since the charge state of metabolites is usually one or two)
have been setup to allow restriction of the number of candi-
date compounds proposed by these databases [90]. Moreover,
additional fragmentation techniques can be used if adequate
sample amount is available for additional analysis [82, 91].
Indeed, MS is a powerful tool in metabolomics investiga-
tions since it enables the detection of low-abundance metabo-
lites. However, identification of such metabolites remains
tricky because of lack of necessary sensitivity to obtain useful
fragment information and difficulties to interpret the gener-
ated fragments (which are in some extent less rules driven
than peptides fragments). Other parameters can also assist in
metabolite identification: for example, the polarity/volatility
of the molecule. The retention time in LC/GC can give useful
indications that can sometimes rule out candidate molecules.
Nevertheless, in the end, the only conclusive and unambigu-
ous method to identify a given metabolite is the comparative
analysis of the corresponding authentic reference standards
to verify the different identification criteria to respect [92].
To this end, internal databanks are starting to be built al-
lowing automatic annotation (based on experimental masses
and retention times) of a maximum of organic compounds
present in complex metabolic fingerprints [93,94]. A good re-
view of the tools developed to improve the annotation of MS-
based metabolomics datasets may be found in Junot et al. [60].
However, even if several tools are available today for metabo-
lite identification, there is still incomplete identification in
fingerprints, this step being the bottleneck of metabolomics
investigations.
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3 How the approach is used today in
research

Approaches usually conducted in metabolomics involve the
collection of fingerprints by comprehensive analytical tech-
niques for the detection, by a differential approach, of changes
in the metabolome of samples collected from a “control”
population and a “test” population. The objectives can be
descriptive and explicative, through the characterization and
understanding of metabolic changes resulting from one or
more given factors, or diagnostic, through the identification of
biomarkers that can further be used for predictive modeling.
The field of metabolomics continued to grow rapidly over the
last decade and has been proven to be a powerful technology
in predicting and explaining complex phenotypes in diverse
biological systems. Metabolomics, originally developed for
human biomedical applications [4] has been an application
driven science with broad range of applications in various
fields, including medical and environmental science, food
quality and safety, and engineering of microbial systems [95].

In medical sciences, metabolomics enables the differential
assessment of the levels of a broad range of endogenous and
exogenous molecules and has been shown to have a great
impact on the investigation of physiological status, diagno-
sis of diseases, and identification of perturbed pathways due
to disease or treatment [96]. There are two major purposes
for its use in medicine. The first is to acquire knowledge on
the mechanisms of drug action [97] or the disease itself [98]
by bringing new insights in disease etiology. Another is to
explore biomarkers [99,100]. Indeed, metabolomics may pro-
vide advantages that classical diagnostic approaches do not
have, based on the discovery of a suite of clinically relevant
biomarkers, whose levels are simultaneously affected by the
disease. Metabolomics may also be of good help in toxicolog-
ical science since it has the ability to evaluate/monitor poten-
tial toxicity [101]. Metabolomics can assist in predicting and
classifying different modes of action of toxics and identifying
novel biomarkers of toxicity, either biomarkers of exposure to
a substance [102] or biomarkers of effect after exposure [103].

In environmental science, metabolomics is used for de-
termination of the effect of biochemical or environmental
stresses on plants, which include genetically modified plants
[104]. Many studies have concentrated on the physiologi-
cal development of plant tissues as well as on the stress
responses involved in heat shock or treatment with stress-
eliciting molecules. Plant–host interactions represent one of
the most biochemically complex and challenging scenarios
that are currently being assessed by metabolomic approaches
[105]. Untargeted analyses have been used as well in the iden-
tification of possible fingerprints of biological phenomena
such as plant diseases [106]. Beyond plants, metabolomics
technology has made significant inroads into the environ-
mental research community [107]. This approach has consid-
erable potential for characterizing the responses of organisms
to natural and anthropogenic stressors and to finally assess
environmental quality.

In food science, metabolomics has recently risen as a po-
tent tool [108]. It has many applications in different areas
of food science and technology. It can be used to identify
and classify food constituents giving the opportunity to un-
derstand the molecular details of what gives certain foods
and drinks their unique taste, texture, aroma, or color. The
capacity to assess food constituents can be used as well to as-
sess both food adulteration and quality [109]. Metabolomics
provides as well new screening approaches to prevent fraud
in food-producing animals and therefore can help in ensur-
ing food safety [110]. In nutritional science, metabolomics
is expected to characterize effect of nutrients, food, or diet
on the organism with precision [111]. As nutrition nowa-
days focuses on improving health of individuals through diet,
metabolomics can be used to assess metabolic responses to
deficiencies or excesses of nutrients and bioactive compo-
nents [112].

Finally, metabolomics has great potential in metabolic en-
gineering. Indeed, rational engineering of metabolism is im-
portant for bioproduction using microorganisms and infor-
mation on how the cell is using its biochemical resources is
a good way to inform strategies to engineer a cell to produce
a target compound [113, 114].

4 Worked example

This illustrating example is taken from a published study
related to the control of forbidden substances in breeding
animals [115]. �-Adrenergic agonists are a class of sympa-
thomimetic agents that act upon the �-adrenoreceptors. �2-
Agonist compounds are used as bronchodilators, tocolytics,
or heart tonics in human and veterinary medicine. During
the past 20 years, several studies focused on the effects on
growth rate and performances, when administered per os,
mixed with feeding stuffs. Because of their ability to shift
nutrients toward protein instead of lipid anabolism, such
molecules were gathered under the generic name of “reparti-
tioning agents.” Because pharmacological residues found in
slaughtered cattle were found to have caused acute intoxica-
tion in consumers, European Commission Directive 96/22
prohibited its use in food producing animals except for well-
defined therapeutic purposes and under strict veterinary con-
trol. Nevertheless, �2-agonist compounds are still misused
in food-producing animals for growth-promoting purposes.
Efficient methods based on MS detection have then been
setup for this class of anabolic agents to ensure their control;
such methods rely on the direct measurement of drugs in
a targeted mode, allowing the detection of a given number
of known compounds. Nevertheless, there are many possible
chemical structures for �2-agonists and along with the ille-
gal use of some well-known such as clenbuterol, salbutamol,
and bromobuterol, new compounds, which exhibit activity
at the �2-adrenoreceptor have been progressively discovered.
Therefore, a range of compounds, either of known chemical
structures but not yet included in the methods, or of unknown
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Figure 8. Typical total ion chromatograms (TIC) obtained in RP LC–positive electrospray–high-resolution MS for urine samples collected
from a nontreated (up) versus a treated (down) calf with clenbuterol (taken from Courant et al. [115]). The beginning of the chromatograms
corresponds to polar compounds (amino acids and hydrophilic small molecules). The region from 10 to 15 min corresponds to the elution
of moderately polar metabolites, for example, organic acids and small peptides. The region from 15 to 35 min corresponds to the elution
of apolar compounds, which are scarce in urine samples explaining the lack of chromatographic peaks in this region.

chemical structures, can be skipped during routine screen-
ing and confirmatory analysis. In addition, some practices
consisting in the use of “cocktails” composed of mixtures of
low amounts of several substances that exert a synergistic ef-
fect and exhibiting similar growth-promotion properties have
been reported. The combination of unknown �2-agonists and
low levels makes these illegal practices difficult to handle
with. In this context, metabolomics may represent a new
emerging strategy for investigating the global physiological
effects associated to a family of substances (rather than mon-
itoring the illegal molecules itself) and therefore, suspect the
administration of �2-agonists (either “cocktails” or unknown
compounds). As a demonstration of feasibility, metabolomics
approach based on LC coupled to high-resolution MS was ap-
plied to investigate changes in the urinary metabolome of
calves treated orally with clenbuterol for six consecutive days
and compared with nontreated calves. All calves were male of
80-day old that were allowed to acclimatize for 1 week before
treatment. The sample preparation procedure was the less se-
lective as possible in order to reveal as much information as
possible and consisted only in the filtration of the urine sam-
ples and freeze-drying for reconstitution in water at a defined
dry matter of 30 mg/mL. Fingerprints were acquired through
high-resolution MS in full-scan mode (m/z 50–800) at a re-
solving power R of 30 000. A typical total ion chromatograms
is presented in Fig. 8 illustrating the high difficulty to distin-
guish any significant differences between samples collected
in treated and nontreated calves on the basis of a simple vi-
sual examination of such global profiles. All the metabolic fin-

gerprints acquired by LC-high resolution mass spectrometry
were then processed with XCMS software. XCMS used a sim-
ple univariate t-test to identify metabolites presenting abun-
dances significantly different between sample subgroups to
be compared, and ranks these metabolites according to a sta-
tistical confidence level parameter (p-value) associated to this
observed difference of abundance. Metabolomic changes oc-
curring after clenbuterol treatment could be assessed through
a plot (Fig. 9) on which each point corresponds to one ion
[m/z; rti] plotted according to its p-value and its rank. Ions
are then sorted out on the x-axis from the most (left) to
the less (right) discriminant between control and treated ani-
mals. Thus, the higher the number of ion below the statisti-
cal p-value limit (0.05), the more important seems to be the
metabolic modifications induced by the clenbuterol adminis-
tration. Figure 9 represents the overlapped results obtained
for metabolomic profiles collected 2, 3, 4, and 10 days after
clenbuterol administration. During the successive three treat-
ment days, a gradual change in the metabolome of treated an-
imals can be observed. Nevertheless, the metabolome seemed
to be the most affected by clenbuterol administration 4 days
after treatment, and tends to return close to the control group
10 days after treatment. The end of the clenbuterol treat-
ment occurring at day +6 could be explained by a feedback
phenomenon. By means of multivariate statistics (i.e., or-
thogonal partial least squares-discriminant analysis), these
metabolic differences were used to build predictive models
able to suspect clenbuterol administration in calves. Biomark-
ers were highlighted, among which creatine had already been
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Figure 9. Overlapped results (each point corresponds to one ion plotted according to its p-value and its rank) obtained for metabolic
fingerprints collected before clenbuterol treatment (day 0) and on days 2, 3, 4, and 10 (taken from Courant et al. [115]).

demonstrated as being downregulated after an anabolic treat-
ment. Creatine being a nitrogen donor, its downregulation
appeared consistent with the reinforcement of anabolism. In
a second step, this study was completed by a parallel study
involving several independent bovine experiments with dif-
ferent animals, different breeding conditions, and different
parameters (doses, compound mixtures, etc.) to extract the
�2-agonists characteristic changes. Biomarkers were high-
lighted (and confirmed the previous ones highlighted under a
clenbuterol treatment) and a weighted combination of the se-
lected biomarkers intensities allowed establishing an efficient
and robust tool as a screening method to suspect illegal prac-
tices [116]. This example demonstrates how metabolomics
approaches may be considered of valuable interest to over-
come current limitations in the control of growth promot-
ers’ abuse, with promising perspectives as new effect-based
screening approaches.

5 Current limitations and useful working
limits

More and more original studies are emerging that indicate
the promising capabilities of metabolomics, but that also
demonstrate that there are many issues that must first be
addressed if metabolomics is to reach its true potential. In-
deed, metabolomics still retains several intrinsic limitations
that have a great impact on its widespread implementation,
limitations that lie in biological issues and experimental mea-

surements. On a biological point of view, the metabolome
is sensitive to various genetic and environmental stimuli.
Therefore the execution of a metabolomic study requires the
consideration of a number of factors so that confounders can
be limited and information recovery optimized [117]. This is-
sue is complicated when dealing with discrete signatures that
can be blurred by multiple sources of variation, interindivid-
ual variations being sometimes larger than the studied factor.
Sources of variation can result from various factors occurring
at different stages of the experimental process. These include
diversity among the selected sample population (gender, diet,
medications, etc.), uniformity of sample treatment, and con-
sistency in sample handling and analysis. Further research
in advanced statistics is then needed to be able to separate
interindividual variability caused by genetic, diet, and envi-
ronmental factors from related metabolic effects, which are
under study. Moreover, for studies based on biofluids, rep-
resentativeness of a single sample collected at one moment,
which represents a snapshot of the metabolite content of the
analyzed specimen is another challenge. Therefore, in any ex-
periment, standardization of protocols is a valuable practice
for minimizing data variation. Standard operating procedures
can be employed to overcome variation in sample handling
and processing techniques. Another challenge is to be able
to properly interpret results of metabolomics investigations
in terms of biological meaning. Indeed, due to the incapacity
to cover the whole metabolome and to structurally elucidate
all the biomarkers, biological interpretation remains a tricky
issue since we must compile the fragments of information
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obtained from the experiment and try to explain the link
between changes in metabolite concentrations and the factor
being studied. Data visualization also remains a difficult task.
The development of biochemical pathway analysis tools aim-
ing at building associations between the MS signals collected
and existing knowledge may help in that sense [118, 119].

On an analytical point of view, there is no universal tech-
nique covering the diverse range of analyte structures and
polarities present in most biological samples. A substantial
benefit could then be expected from crossing complementary
analytical techniques in the scope of reaching a more com-
prehensive view of the metabolome. However, if this may be
possible when working on a small number of samples, this
is practically impossible on a large number of samples as
the one encountered in epidemiology studies. Indeed, multi-
ple platforms profiling directly impact the cost and duration
of analytical treatment, and consequentially the real high-
throughput capabilities of the approach. The fusion of data
collected on different analytical platforms also remains an is-
sue that has not been solved yet. Another analytical limitation
arises from the semiquantitative nature of metabolomics. In-
deed, the goal of absolute quantification, as performed for
targeted analysis with the use of internal standards (com-
pounds presenting a similar structure than the analytes to
be quantified to allow normalization for recovery and matrix
effect), is not reachable considering the large number and
diversity of metabolites. Therefore, the systematic variability
between LC-MS measurements must be kept under control
to make sure that the differences observed between groups
of samples are not spurious. The inclusion of quality controls
(consisting in a pool of all the analyzed samples) injected at
the beginning, end, and also randomly all along the analyti-
cal run, and allowing the characterization and control of the
total variance associated with the MS instrument, is a prereq-
uisite [120]. When large metabolomics studies divided over
a series of analytical blocks cannot be avoided, normaliza-
tion of the data can be considered. Dunn et al. suggest using
quality control sample to allow for signal correction within
and between analytical blocks [40]. However, such normal-
ization protocols proposed to correct signal intensity (when
a drift is acknowledged) do not correct for metabolites being
no more detected when the ionization source is too dirty. The
limitation is the still insufficient stability of the instrumenta-
tion used for generating the metabolic descriptors. Another
analytical challenge is to be reproducible between analytical
platforms (intra- and interlaboratory) to allow comparison of
results obtained by different teams on the same subject and
enhance the potential of metabolomics. However, there is no
consensual strategy emerging from the scientific community
regarding MS-based metabolomics, and a wide heterogene-
ity of analytical strategies and workflows exists today. There
is an urgent need for standardization procedures. Finally,
as discussed earlier, the identification of the large number
of metabolites that are detected but whose chemical nature
is unknown is a real challenge in metabolomics and con-
stitute another limitation of the approach. Indeed, in best

cases, only 30% of the total of MS signals detected in an ex-
periment is structurally identified. The 70% left, which may
represent information on changes in metabolic profiles, re-
mains unknown and consequently lacks for the biological
interpretation of the results.

6 Future developments

In order to overcome the limitations described above, re-
search has been undertaken in different areas. Metabolomics
organizations are currently working toward guidelines for
commonality in metabolomics experiments as development
of optimal methodologies and study designs are needed
[40, 92, 121]. Reporting of standard metadata will provide a
biological and empirical context for the data, facilitate exper-
imental replication, and enable the reinterrogation and com-
parison of data by others [122]. Additionally, knowledge of the
effects of normal physiological variation on metabolic profiles
is essential for accurate interpretation of profile changes, par-
ticularly in human studies, because of diversity in lifestyle
and environmental factors. The effects of factors such as eth-
nicity, gender, age, body composition, health, dietary intake,
physical activity, gut microflora, and stress need to be fur-
ther explored in order to advance the understanding of the
human metabolome and therefore improve data interpreta-
tion [29]. Developments in advanced statistics could be ex-
tremely useful to help separating interindividual variability
caused by genetic, diet, and environmental factors from re-
lated metabolic effects, which are under study. Additionally,
as data structures become increasingly complex, particularly
when considering the addition of supplementary dimensions
associated to the generated metabolomic data, for example,
a kinetic aspect for integrating the temporal evolution of the
considered metabolic profiles (time series data representing
multiway tensors of high-order or multiblock data tables),
new solutions are being developed to cope with these new
types of data. Recently, strong interest has developed in mul-
tiway (parallel factor analysis, N-way partial least squares)
and multiblock methods (constrained principal component
analysis, multi-block partial least squares) [79].

With regards to the coverage of the metabolome, advances
in separation sciences will help in this wish [123]. Appropri-
ate separation of complex samples is an important part of
metabolomics analysis. The chemical information in the re-
tention time may be used to identify a metabolite. Moreover,
MS alone cannot distinguish isobaric compounds, whereas
chromatography is usually powerful to separate isomers.
In the next future, the democratization of fast chromato-
graphic systems (fast-LC or fast-GC) is probably an evolu-
tion, which will yield substantial benefits for metabolomics.
Narrower peak width and increased S/N will help getting
more and more information from a sample analysis in a
high-throughput fashion. The development of robust hy-
drophilic interaction chromatography represents a comple-
mentary normal-phase LC separation mode for resolving
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polar/ionic metabolites and their isomers that are poorly
retained by RP chromatography. Another future direction
would be to combine efficiently two or more complementary
stationary phase systems in order to achieve a satisfactory
separation. One of the latest advancements in the GC system
is the development of a 2D GC/MS system (GC × GC/MS)
[124]. However, additional time resources are needed for data
alignment, peak picking, and normalization that complicate
data preprocessing and statistical analyses. Supercritical fluid
chromatography (SFC), which combines some advantages of
both GC and LC, is a high-resolution and high-throughput
separation method using supercritical fluid (noncondensable
fluid over liquid-gas at the critical point) as a mobile phase.
Due to the high diffusion coefficient of the supercritical fluid,
the separation capacity of SFC is much higher compared with
LC. In addition, since the polarity of the supercritical fluid car-
bon dioxide is similar to hexane, SFC can also be employed
for the analysis of hydrophobic metabolites [125]. Regarding
mass analyzers, it is expected that future improvements in
analytical sensitivity may reveal the presence of metabolites
that are at the moment close to or under the detection limit of
the current instrumental methods. Instruments with higher
mass resolving power and higher scan speed may also allow a
better characterization of the samples and ease the structural
elucidation process. The development and generalization of
ion-mobility spectrometry (IMS) is another future possibility
[126]. The peak capacity of mass spectrometers can be in-
creased by coupling IMS as a preseparation technique prior
to MS analysis. IMS is used to separate ionized molecules in
a gas phase based on their ion mobility in a carrier buffer gas.

Regarding metabolites identification, the use of databases
has become well structured and more straightforward be-
cause of the initiatives allowing merging of several databases
available on the Internet into the same software [74, 127].
However, as mentioned earlier there are sometimes hun-
dreds of possible structures even for a mass entered with
three-digit precision. The use of multidimensional mass spec-
tra (i.e., multiple fragmentations) can aid in structure eluci-
dation, particularly when dealing with isomers. The devel-
opment of instruments and softwares that allow full-scan
analysis along with MS/MS experiments in the same analyt-
ical run is another way forward [128]. For the data collected
by different groups to be useful for the entire community,
standardization of CID MS/MS spectra acquired with API is
essential. It will allow to establish LC-MS identification data-
banks shared into the community as it is the case for GC-MS
with the NIST. Initiatives are currently on-going on this topic
in order to define normalization procedures [129].

In conclusion, the emerging field of metabolomics, in
which a large number of small molecule metabolites are
detected quantitatively, promises immense potential for dif-
ferent areas such as medicine, environmental sciences,
agronomy, etc. Detection of crucial disturbances in the con-
centration of key biomarkers can be beneficial and bring new
insights into innovative specific research questions. Provided
that research continues in order to circumvent limitation dis-

cussed in this article, integrated applications with genomics,
transcriptomics, proteomics, will provide greater understand-
ing of global system biology.
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